
1 | Page

NEW YORK UNIVERSITY – Polytechnic School of Engineering

Department of Mechanical and Aerospace Engineering

 ME 7863 – Advanced Mechatronics

Spring 2015

Integrated Project

AR Drone

Phase 3

Charging Platform Development

HENRY M CLEVER

FENG WU

ASHWIN R

2 | Page

CONTENTS:

SL.NO. TOPIC PAGE NO.

1. Abstract 3

2. Introduction 3

3. Components 4

3.1. Raspberry Pi 4

3.2. IR Emitter 6

3.3. Nintendo-Wii camera 6

3.4. Arduino Micro 7

3.5. XBee Explorer Regulated 7

3.6. SparkFun XBee Shield 8

3.7. Charging Platform 9

4. Bill of Materials 10

5. Working Details 11

6. Results and discussion 13

7. Future Enhancement 14

8. Programming Code: Arduino 15

9. Programming Code: Raspberry Pi 17

10. Prototype 24

11. References 27

3 | Page

1. ABSTRACT:
 The AR Drone project was successfully built to an end-goal of achieving an

automated landing and battery charging station for the AR Drone. Through this integrated

project, we will enable individuals with severe disabilities to operate the AR Drone with

more autonomy. We designed a charging station and automatic landing sequence for the

AR Parrot Drone 2.0 by integrating an lightweight Arduino Micro with a Wii remote

camera to detect three LEDs in a 30-60-90 triangular configuration on the landing

platform. This enables distance and position feedback through trigonometric calculations.

The data acquired from the camera is sent via XBee to Raspberry Pi, which processes the

control signal based on LED orientation, and sends commands to AR drone directly. The

drone can land automatically on the charging platform and charge in the station.

Furthermore, a user-friendly GUI built in Python code on the Raspberry Pi enables a

quadriplegic person to actuate the quadcopter as a surveillance tool using cursor

movement and clicking.

2. INTRODUCTION:

 Recall that in recent years, the AR Parrot Drone has been used to allow bedridden

people and those with severe disabilities to virtually travel anywhere in the world. This

final phase of the project uses the design development of the first two project phases and

concludes the project with a more consolidated and streamlined system and the addition

of battery charging via landing pad.

 The Raspberry Pi enable automatic control to take over once the AR Drone with

within range of the landing pad. Using a series of infrared LEDs and the camera from a

Nintendo Wii remote, we can track a series of LEDs on a landing pad to determine 3-

dimensional distance and rotation of the AR Drone from the landing pad. An Arduino

micro onboard the AR Drone interfaces directly with the camera and an XBee to send the

feedback signal to Raspberry Pi.
 In normal operation, the Raspberry Pi takes commands from the GUI. However,

the unique ability to process parallel code using threading in python is used to engage the

closed feedback loop automatic control sequence when the Wii camera on the AR Drone

detects the landing pad. If this is sensed, the Raspberry Pi uses a modified proportional

control algorithm (bang-bang control with a dead spot) to move the AR Drone closer to

the landing pad, and attempts to land it exactly on a set of permanent magnets that attract

the feet of the AR Drone.

 Although all of our control methods work and control the AR Drone

automatically based on our algorithm, an improvement of the control robustness is still

necessary for consistency of landing. We have successfully landed the AR Drone on the

landing pad, but it requires delicate commands from the GUI to maneuver properly. For

this landing pad to be useful for people with disabilities who have more difficulty

4 | Page

controlling AR Drone, it will be essential to identify possible non linearities in the control

system and tune the existing parameters.

3. COMPONENTS:

3.1. Raspberry Pi: We built a GUI in The Raspberry Pi to control the drone. The

Raspberry Pi is receiving data from camera which mounted on the Arduino micro and the

drone. Most importantly, the Raspberry Pi eliminates the previous need of a computer

operating system, a Propeller, and a third XBee. This consolidation makes the setup

easier and the system more reliable because there is less hardware. See the comparison of

the two control flow diagrams below.

Figure 3.1.1: Control Comparison

The GUI built in Python code on the Raspberry Pi allows manual control of the drone and

performs the same task as did the joystick controller in the first two phases. It is more

reliable and much easier to use. Convenient ‘mouse over’ highlights buttons when the

mouse is over them and further highlights them when depressed. Holding a button flies

the drone continuously in a given direction. The speed applies to all of the movement

commands.

5 | Page

 Fig. 3.1.2 Raspberry Pi GUI

With the camera data, the Raspberry Pi controls the drone to land automatically. The

Raspberry Pi is a single-board computer developed in the UK by the Raspberry Pi

Foundation with the intention of stimulating the teaching of basic computer science in

schools. The design based on a Broadcom BCM2835 system on a chip, which includes an

ARM1176JZF-S 700MHz processor, VideoCore IV GPU, and 512 megabytes of RAM.

The design does not include a built-in hard disk or solid-state drive, instead relying on an

SD card for booting and long-term storage.

 Fig. 3.1.3 Raspberry Pi

6 | Page

3.2. IR Emitter: A high-performance infrared emitter whose peak wavelength is 940nm.

These high-output infrared LEDs are a perfect light source for various kinds of security

systems that need higher radiation. They also can be used in products ranging from TV

remotes and auto-focus cameras to electronic gates. Our 30-60-90 triangular

configuration of LEDs is ideal for spatial mapping, including distances, position, and

rotation.

 Fig. 3.2. IR LEDs

3.3. Nintendo-Wii camera: We physically extracted the IR camera from the Wii remote

and interface it with an arduino micro. The Wii IR camera has an integrated processor

which outputs the X and Y positions and size of the 4 brightest IR points that it detects.

 Fig. 3.3. Nintendo Wii and its camera

7 | Page

3.4. Arduino Micro: The Wii remote camera is processed by Arduino Micro. Arduino

micro is one of the main controllers in the system. The Arduino Micro is a

microcontroller board based on the ATmega32u4, developed in conjunction with

Adafruit. It has 20 digital input/output pins (of which 7 can be used as PWM outputs and

12 as analog inputs), a 16 MHz crystal oscillator, a micro USB connection, an ICSP

header and a reset button. It contains everything needed to support the microcontroller;

simply connect it to a computer with a micro USB cable to get started. It has a form

factor that enables it to be easily placed on a breadboard. It processes the signals from

camera and sends the messages to the Raspberry Pi through XBee pairs.

Fig. 3.4. ARDUINO Micro

3.5. XBee Explorer Regulated: This little device is used for wireless communication

between Raspberry pi, Arduino micro. This SparkFun XBee Explorer Regulated makes

the XBee module so much nicer to use, by managing the 3.3V power regulation, signal

conditioning, and adds LED activity indicators (for power, RSSI and DIN/DOUT). It

also level-shifts 5V signals to match the 3.3V the XBee expects.

 Fig. 3.5. XBee Explorer Regulator

8 | Page

3.6. SparkFun XBee Shield: The SparkFun XBee Shield is mounted directly onto

the Arduino micro and adds XBee radios an awesome way to our project. The shield

form-factor mates directly with any dev board that has an Arduino standard footprint

and equips it with wireless communication capabilities using the popular XBee module.

This unit works with all XBee modules including the Series 1 and 2, standard and Pro

versions.

 Fig. 3.6.1 SparkFun XBee Shield

Finally, this hardware was combined for placement on the AR Drone in Phase 2. It was

designed to fit compactly on the AR Drone and as light as possible to avoid weight

strain and wind turbulence.

Fig. 3.6.2 SparkFun XBee Shield + Arduino Micro + necessary hardware

9 | Page

3.7. Charging Platform: We constructed a charging station with four landing pads

contacting to the feet of the drone. The landing pad has copper and wires connecting to

the charger. A dummy fixture was built to be plugged into the wall charger to take the

place of battery contacts. Wires onboard the drone were soldered to the battery contacts

that lead to this dummy fixture through the feet of the drone.

Figure 3.7.1: Charging dummy fixture; soldered wires onto the battery aboard the drone

The battery in the drone has charging wires looping to the feet. To hold the copper wire

surfaces of the landing pad and the copper soldering wick surfaces of the feet together

properly, solder was melted evenly over them to increase rigidity.

 Fig. 3.7.2 Charging station and drone feet

10 | Page

4. BILL OF MATERIALS:

 The following is the list of the materials used in the project along with their price. The

total is the cost of prototyping for the raspberry-controlled and auto landing drone. The

greater part of the total cost was electronic components including Raspberry Pi, Arduino

micro, Nintendo-Wii and XBee kit. The most expensive component is Parrot AR drone,

which is free--borrowed from a team member.

 Table: Bill of Materials.

Sl. No. Component Price per piece Quantity Total Price

1. Raspberry Pi $31.99 1 $31.99

2. IR Emitter $2.00 6 $12.00

3. Nintendo wii camera $25.99 1 $25.99

4. Arduino micro $25.57 1 $25.57

5. XBee Explorer Regulated $17.95 1 $17.95

6. SparkFun XBee Shield $14.95 1 $14.95

7. Wifi dongle $7.99 1 $7.99

7. DB9 RS232 Serial Cable $3.49 1 $3.49

8. USB cable $4.67 1 $4.67

9. Yellow LED $0.99 6 $5.94

10. Parrot AR drone Quadricopter $0.00 1 $0.00

 TOTAL PRICE $150.54

11 | Page

5. WORKING DETAILS:

 Technical Specifications Sensors:

● 3 axis gyroscope 2000°/second precision

● 3 axis accelerometer +-50mg precision
● 3 axis magnetometer 6° precision

● Pressure sensor +/- 10 Pa precision
● Ultrasound sensors for ground altitude measurement

● 60 FPS vertical QVGA camera for ground speed measurement

AR drone is a Wifi controllable drone, that currently has Iphone, Android apps to control the

drone. We incorporate a traditional joystick with potentiometers and buttons to configure the

device as a joystick controller for the drone.

We have incorporated potentiometers connected to analog input pins to precisely measure the

joystick movements through arduino and scale them as appropriate inputs to be fed into the

processing and to the drone.

Working Explanation:

Quadcopter Landing pad Design:
The landing pad is fitted with 6 indicator Leds and 9 IR Leds (3 LEDs per cluster * 3

clusters). The indicator Leds turn on when the Wii camera fitted in quadcopter detects the IR

12 | Page

leds(closeby to the landing pad). The IR leds are used to position and orient the quadcopter

with reference to the landing pad. The landing pads are fitted with permanent magnets to

attract the quadcopter and position it appropriately to implement the charging station.

IR-Led tracking:

The Wii camera, connected to an Arduino Micro fitted on the quadcopter. The

communication between the Wii camera and the Arduino Micro are established by I2C

communication protocol. The Wii camera is coded to track three coordinate points on the

landing pad. The tracked coordinates, in wirelessly sent to raspberry pi through Xbee serial

communication. The IR Led tracking is performed by clocking the Wii camera at 24MHz.

The Arduino and Wii camera communicate at a sampling rate up to 400kHz. The Arduino

micro sends data to raspberry pi at 9600 baud rate.

The raspberry pi python script computes the coordinate orientation and determines the

longest side of the triangle formed by the IR Leds. The center point, the distance between the

other two points and slope of the perpendicular bisector from first point.

Quadcopter Control:

The quadcopter is controlled using the GUI designed in python. The GUI is optimized

in size to display the drone videos and the buttons, with options to turn right, left, back, forth,

up, down, and rotation about the vertical axis (yaw).

Autonomous Quadcopter landing:
We have designed a landing pad with 3 IR led points tracked by Wii IR camera. The IR

camera connected to Arduino Micro fitted on the Quadcopter sends the data of 3 coordinates

on the landing pad. The landing pad, connected to the raspberry pi pin 25 lights once the IR-

camera detects all the three IR-leds. Based on the current location of the quadcopter, the

raspberry pi python code for automatic landing steers the quadcopter to align it with the

magnets located on the landing pad through a simple bang-bang control algorithm.

Mathematical Modeling:
The Wii camera detects the IR leds on the landing pad. The IR led points on the landing

pad are mathematically modelled to compute the desired back-front, left-right and down

motions of the drone. The position of first point is referenced to compute the direction to be

moved to orient the quadcopter right below the magnets. The range of the IR camera is 1000

along left-right direction and 750 along front-back direction. The mid-point is computed as

500 and 360. The ideal landing position of the first point is 500,360. The quadcopter is

programmed to fly according to the location of the first point with respect to the reference

point. The height of the quadcopter is programmed with respect to the distance between the

other two points. The orientation is linked to the slope of the perpendicular bisector from the

first point to the line between other two points.

13 | Page

6. Results and discussion:

 We were able to implement the Raspberry pi to control the AR Drone from GUI that

can be accessed easily by a quadriplegic person in a similar fashion that the phase 2 was

completed with propeller. However, we removed the manual joystick and implemented all

functions into the GUI. With Propeller, we utilized parallel processing loops to integrate

automatic control takeover of the landing pad, and Raspberry Pi completes this method

similarly with a threading method. The Raspberry Pi processes the IR LED signal and

commands the AR Drone to move automatically via modified proportional (bang-bang)

control. This control system still exhibits the same issues that the Propeller control did in the

previous project. It lowers the AR Drone, moves it back/forth/right/left automatically until it

reaches the desired place to land. Similarly to Propeller, this automatic control system

sometimes fails to land the AR Drone properly because the bang-bang control algorithm is

insufficient for reliable use.

Previously, the AR Drone drifted and had trouble hovering for a variety of reasons.

First, we have crashed it multiple times and damaged the blades. Also, the circuit board

holding the XBee, Arduino Micro, Wii camera, and circuitry is off center and causes

turbulence in flight and uneven weight. Before our crashes and modifications, the AR Drone

hovered without any noticeable movement in any direction. This hovering negatively affects

the control system of the automatic landing pad and can cause the AR Drone to land

incorrectly.

Our current Raspberry Pi system is a far better platform than the previous phase for

testing the control system and improving it. Through the elimination of the joystick,

Propeller, extra XBee, and computer OS, we have designed a much simpler system that

passes control feedback through fewer links, resulting in a faster response time. Simpler

systems also tend to be more reliable because there are fewer parts that could break during

operation. Although the Raspberry Pi + onboard Arduino Micro automatic landing system is

not ready to sell in the Best Buy nearest you, it is an excellent platform for an advanced

controls project.

The battery charger we implemented was successful because of the high conductivity

and robustness of materials used in contact areas. Soldering wick is like a copper shoe lace or

even a miniature Chinese finger trap--it can be stretched to thin or pushed together to widen,

and hold its shape due to the malleability of the copper. Once it was bent around the feet of

the AR Drone under the magnets, we melted solder over it so it would hold its shape.

Similarly to the soldering wick, a long strand of copper wire (2-3 ft) was bent in a circular

fashion and placed on the magnets of the landing pad.

Because of the large bandwidth required to run the AR Drone camera on wifi, the

Raspberry Pi has difficulty processing the data because it has less processing power than a

conventional computer. During testing, we ran into problems when the system ‘crashed’ and

14 | Page

the AR Drone wifi communication stopped at mid-flight. This could be improved by

decreasing the video feed quality of the camera as it sends data via wifi. However, it requires

significant modification of the C libraries used to run the AR Drone in Raspberry Pi.

Overall, the project was successful and the Raspberry Pi provides an excellent

simplified solution to the previous designs in Arduino and Raspberry Pi. With more

development of the C libraries and control system, we are confident the system would work

reliably.

7. Future Enhancement:

First, a new properly working and undamaged AR Drone is necessary for optimally

testing our control parameters. Removing the multiple directional drift will enable our AR

Drone fly more precisely and therefore facilitate automatic landing control.

Similar to the recommendation of phase 2, the circuitry for the camera should be moved

to the center of mass of the standalone Drone. Although the circuit boards are compact in the

current configuration, a better system would feature a customised board to consolidate the

surface mount chips into a board that would be lighter and easier to assemble.

Due to processing constraints of Raspberry Pi we need to modify the C libraries that

link our Python code to the AR Drone wifi signal to decrease the quality of camera data.

Once this is decreased the problem of system crashing should no longer occur. This would

make control system testing much less frustrating.

Lastly, also similar to the recommendation of phase 2, it is necessary to use the gyro

sensor or accelerometer inside of the AR Drone circuitry as an additional input in the control

system loop. However, it may be difficult to recover these sensor readings using the WiFi

and Processing code that connects to the AR Drone. The library for AR Drone control is

quite sophisticated and changing merely a few lines of code to obtain a sensor reading may

cause problems elsewhere, such as timing delays in WiFi connection. A sensor could be

added to the Arduino Micro circuitry onboard the AR Drone so the landing pad ‘add-on’

procedure is less invasive and easier implement. This would complete the control scheme for

the MIMO system and give 4 inputs to match our 4 outputs.

15 | Page

8. PROGRAMMING CODE: ARDUINO
// Wii Remote IR sensor

//written by Henry M. Clever, Ashwin R, Feng Wu

//Date: April 13, 2015

#include <Wire.h> //For I2C

#include <SoftwareSerial.h> //SoftwareSerial for Xbee

// XBee's DOUT (TX) is connected to pin 2 (Arduino's Software RX)

// XBee's DIN (RX) is connected to pin 3 (Arduino's Software TX)

SoftwareSerial XBee(8,9); //Xbee communication with the Raspberry PI

int IRsensorAddress = 0xB0; //The address of Wii camera

int slaveAddress; //The address of the slave

//int ledPin = 13;

boolean ledState = false;

byte data_buf[16];

int i;

int Ix1,Iy1,Ix2,Iy2; //The x,y coordinates of the point 1 and 2

int Ix3,Iy3,Ix4,Iy4; //The x,y coordinates of point 3 and 4

int s; //

void Write_2bytes(byte d1, byte d2)

{

 Wire.beginTransmission(slaveAddress);

 // Serial.println("AA");

 Wire.write(d1); Wire.write(d2);

 // Serial.println("AB");

 Wire.endTransmission();

 // Serial.println("AC");

}

void setup()

{

 slaveAddress = IRsensorAddress >> 1; // This results in 0x21 as the address

to pass to TWI or i2c

 // Serial.begin(9600);// For serial printing verification

 XBee.begin(9600); //Xbee serial printing for Xbee serial

 delay(10);

 pinMode(ledPin, OUTPUT); // Set the LED pin as output

 Wire.begin(); //beginning I2C communication

 delay(10);

 // IR sensor initialize

 Write_2bytes(0x30,0x01); delay(10);

 // Serial.print("A");

 delay(5);

 Write_2bytes(0x30,0x08); delay(10);

 Write_2bytes(0x06,0x90); delay(10);

 Write_2bytes(0x08,0xC0); delay(10);

 Write_2bytes(0x1A,0x40); delay(10);

 Write_2bytes(0x33,0x33); delay(10);

 delay(100);

}

void loop()

{

 ledState = !ledState;

 if (ledState) { digitalWrite(ledPin,HIGH); } else { digitalWrite(ledPin,LOW); }

 // Serial.print("F"); for testing I2C

16 | Page

 //IR sensor read

 Wire.beginTransmission(slaveAddress);

 // Serial.print("X");

 Wire.write(0x36);

 Wire.endTransmission();

 // Serial.print("B");

 Wire.requestFrom(slaveAddress, 16); // Request the 16 byte heading (MSB

comes first)

 for (i=0;i<16;i++) {data_buf[i]=0;} // clears the buffer

 i=0;

 // Serial.print("C");

 while(Wire.available() && i < 16) { //read 16 bytes

 data_buf[i] = Wire.read();

 i++;

 // Serial.println(data_buf[i]);

 }

// Read the sensor co-ordinates from the buffer

 Ix1 = data_buf[1];

 Iy1 = data_buf[2];

 s = data_buf[3];

 Ix1 += (s & 0x30) <<4;

 Iy1 += (s & 0xC0) <<2;

 Ix2 = data_buf[4];

 Iy2 = data_buf[5];

 s = data_buf[6];

 Ix2 += (s & 0x30) <<4;

 Iy2 += (s & 0xC0) <<2;

 Ix3 = data_buf[7];

 Iy3 = data_buf[8];

 s = data_buf[9];

 Ix3 += (s & 0x30) <<4;

 Iy3 += (s & 0xC0) <<2;

 Ix4 = data_buf[10];

 Iy4 = data_buf[11];

 s = data_buf[12];

 Ix4 += (s & 0x30) <<4;

 Iy4 += (s & 0xC0) <<2;

//Convert the co-ordinates into strings

char ix1[5];String Ix1_str;Ix1_str=String(int(Ix1));Ix1_str.toCharArray(ix1,5);

char iy1[5];String Iy1_str;Iy1_str=String(int(Iy1));Iy1_str.toCharArray(iy1,5);

char ix2[5];String Ix2_str;Ix2_str=String(int(Ix2));Ix2_str.toCharArray(ix2,5);

char iy2[5];String Iy2_str;Iy2_str=String(int(Iy2));Iy2_str.toCharArray(iy2,5);

char ix3[5];String Ix3_str;Ix3_str=String(int(Ix3));Ix3_str.toCharArray(ix3,5);

char iy3[5];String Iy3_str;Iy3_str=String(int(Iy3));Iy3_str.toCharArray(iy3,5);

char ix4[5];String Ix4_str;Ix4_str=String(int(Ix4));Ix4_str.toCharArray(ix4,5);

char iy4[5];String Iy4_str;Iy4_str=String(int(Iy4));Iy4_str.toCharArray(iy4,5);

//Serial sent to Xbee

XBee.write(ix1);

XBee.write('\t');

XBee.write(iy1);

XBee.write('\t');

XBee.write(ix2);

17 | Page

XBee.write('\t');

XBee.write(iy2);

XBee.write('\t');

XBee.write(ix3);

XBee.write('\t');

XBee.write(iy3);

XBee.write('\t');

XBee.write(ix4);

XBee.write('\t');

XBee.write(iy4);

XBee.write('\n');

delay(50);

}

9. PROGRAMMING CODE: RASPBERRY PI (PYTHON):

#!/usr/bin/env python

"""Demo app for the AR.Drone.

This simple application allows to control the drone and see the drone's video
stream.
"""
import pygame
import pygame.surfarray
import pygame.transform
import libardrone
from threading import Thread
import time
import serial
import RPi.GPIO as GPIO
import math
pygame.init()
W, H = 480, 320
screen = pygame.display.set_mode((W, H)) #initial screen object
clock = pygame.time.Clock()
running = True
drone = libardrone.ARDrone(True)
drone.reset()
flag = False
GPIO.setmode(GPIO.BCM) #setting GPIO
GPIO.setwarnings(False)
GPIO.setup(23,GPIO.OUT)
mouse=pygame.mouse.get_pos() #get mouse position

def button(x,y,w,h,c1,c2): #setting the function of button
 mouse1=pygame.mouse.get_pos()
 if x+w>mouse1[0]>x and y+h>mouse1[1]>y:
 pygame.draw.rect(screen, c1, (x,y,w,h))
 else:
 pygame.draw.rect(screen, c2, (x,y,w,h))

def manualControl():

18 | Page

 myfont = pygame.font.SysFont("Arial",15)
 global running
 global flag
 black=(0,0,0)
 white=(255,255,255)
 green=(0,160,0)
 green2=(0,180,0)
 green_bright=(0,255,0)
 red=(160,0,0)
 red_bright=(255,0,0)
 blue = (0,0,255)
 yellow = (255,255,80)
 yellow_bright=(255,255,0)

 while running:
 speed_display=drone.speed
 s="Speed:"+str(speed_display)
 mouse=pygame.mouse.get_pos()
 #right button
 button(0,260,90,60,green_bright,green)
 screen.blit(myfont.render("Right",1,black),(30,280))
 #forward button
 button(90,260,90,60,green_bright,green2)
 screen.blit(myfont.render("Forward",1,black),(110,280))
 #backward button
 button(180,260,90,60,green_bright,green)
 screen.blit(myfont.render("Backward",1,black),(190,280))
 #left button
 button(270,260,90,60,green_bright,green2)
 screen.blit(myfont.render("Left",1,black),(300,280))
 #Start button
 button(380,0,100,80,red_bright,red)
 screen.blit(myfont.render("Power",1,black),(410,40))
 #move up button
 button(380,80,100,40,green_bright,green)
 screen.blit(myfont.render("Move up",1,black),(400,90))
 #move down button
 button(380,120,100,40,green_bright,green2)
 screen.blit(myfont.render("Move down",1,black),(400,130))
 #Yaw left button
 button(380,160,100,40,green_bright,green)
 screen.blit(myfont.render("Yaw Left",1,black),(400,170))
 #Yaw right button
 button(380,200,100,40,green_bright,green2)
 screen.blit(myfont.render("Yaw Right",1,black),(400,210))
 #speed display background
 pygame.draw.rect(screen, yellow, (380,260,100,60))
 #speed control button +
 button(450,265,20,20,green_bright,green)
 screen.blit(myfont.render("+",1,black),(455,265))
 #speed control button -
 button(450,290,20,20,green_bright,green)
 screen.blit(myfont.render("-",1,black),(455,290))
 #speed display
 screen.blit(myfont.render(str(s),1,black),(380,280))

19 | Page

 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 running = False
 elif event.type == pygame.KEYUP or event.type == pygame.MOUSEBUTTONUP:
 drone.hover()
 pygame.draw.rect(screen,black,(0,240,360,20))
 pygame.draw.rect(screen,black,(360,0,20,240))
 elif event.type == pygame.MOUSEBUTTONDOWN:
 if event.button == 1:
 #if pygame.mouse.get_pressed():
 #left
 if 90>mouse[0]>0 and 320>mouse[1]>260:
 #print 'Right'
 drone.move_right()
 pygame.draw.rect(screen, yellow_bright, (0,240,90,20))
 #forward
 elif 180>mouse[0]>90 and 320>mouse[1]>260:
 #print 'Forward'
 drone.move_forward()
 pygame.draw.rect(screen, yellow_bright, (90,240,90,20))
 #backward
 elif 270>mouse[0]>180 and 320>mouse[1]>260:
 #print 'backward'
 drone.move_backward()
 pygame.draw.rect(screen, yellow_bright, (180,240,90,20))
 #right
 elif 360>mouse[0]>270 and 320>mouse[1]>260:
 #print 'left'
 drone.move_left()
 pygame.draw.rect(screen, yellow_bright, (270,240,90,20))
 #take off/land
 elif 480>mouse[0]>380 and 80>mouse[1]>0:
 if flag == False:
 print 'take off'
 drone.takeoff()
 flag = True
 elif flag == True:
 print 'land'
 drone.land()
 flag = False
 #move up
 elif 480>mouse[0]>380 and 120>mouse[1]>80:
 #print 'move up'
 drone.move_up()
 pygame.draw.rect(screen, yellow_bright, (360,80,20,40))
 #move down
 elif 480>mouse[0]>380 and 160>mouse[1]>120:
 #print 'move down'
 drone.move_down()
 pygame.draw.rect(screen, yellow_bright, (360,120,20,40))
 #yaw left
 elif 480>mouse[0]>380 and 200>mouse[1]>160:
 #print 'yaw left'
 drone.turn_left()
 pygame.draw.rect(screen, yellow_bright, (360,160,20,40))
 #yaw right
 elif 480>mouse[0]>380 and 240>mouse[1]>200:

20 | Page

 #print 'yaw right'
 drone.turn_right()
 pygame.draw.rect(screen, yellow_bright, (360,200,20,40))
 #speed up
 elif 470>mouse[0]>450 and 285>mouse[1]>265:
 if drone.speed <= 0.9:
 drone.speed+=0.1
 #speed down
 elif 470>mouse[0]>450 and 310>mouse[1]>290:
 if drone.speed >=0.2:
 drone.speed-=0.1
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_ESCAPE:
 drone.reset()
 running = False
 # takeoff / land
 elif event.key == pygame.K_RETURN:
 print("return")
 drone.takeoff()
 elif event.key == pygame.K_SPACE:
 print("space")
 drone.land()
 # emergency
 elif event.key == pygame.K_BACKSPACE:
 drone.reset()
 # forward / backward
 elif event.key == pygame.K_w:
 drone.move_forward()
 elif event.key == pygame.K_s:
 drone.move_backward()
 # left / right
 elif event.key == pygame.K_a:
 drone.move_left()
 elif event.key == pygame.K_d:
 drone.move_right()
 # up / down
 elif event.key == pygame.K_UP:
 drone.move_up()
 elif event.key == pygame.K_DOWN:
 drone.move_down()
 # turn left / turn right
 elif event.key == pygame.K_LEFT:
 drone.turn_left()
 elif event.key == pygame.K_RIGHT:
 drone.turn_right()
 # speed
 elif event.key == pygame.K_1:
 drone.speed = 0.1
 elif event.key == pygame.K_2:
 drone.speed = 0.2
 elif event.key == pygame.K_3:
 drone.speed = 0.3
 elif event.key == pygame.K_4:
 drone.speed = 0.4
 elif event.key == pygame.K_5:
 drone.speed = 0.5
 elif event.key == pygame.K_6:

21 | Page

 drone.speed = 0.6
 elif event.key == pygame.K_7:
 drone.speed = 0.7
 elif event.key == pygame.K_8:
 drone.speed = 0.8
 elif event.key == pygame.K_9:
 drone.speed = 0.9
 elif event.key == pygame.K_0:
 drone.speed = 1.0
 pygame.display.update()
 time.sleep(0.05)
 print("Shutting down...")
 drone.halt()
 print("Ok.")

def display():
 while running:
 try:
 pixelarray = drone.get_image()
 if pixelarray != None:
 surface = pygame.surfarray.make_surface(pixelarray)
 rotsurface = pygame.transform.rotate(surface, 270)
 resurface = pygame.transform.scale(rotsurface, (360,240))
 screen.blit(resurface, (0, 0))
 # battery status
 hud_color = (255, 0, 0) if drone.navdata.get('drone_state',

dict()).get('emergency_mask', 1) else (10, 10, 255)
 bat = drone.navdata.get(0, dict()).get('battery', 0)
 f = pygame.font.Font(None, 20)
 hud = f.render('Battery: %i%%' % bat, True, hud_color)
 screen.blit(hud, (10, 10))
 alt = drone.navdata.get(0, dict()).get('altitude', 0)
 g = pygame.font.Font(None, 20)
 fed = g.render('Altitude: %.2f%%' % alt, True, hud_color)
 screen.blit(fed, (100,10))
 except:
 pass
 pygame.display.update()
 pygame.display.flip()
 clock.tick(50)
 pygame.display.set_caption("FPS: %.2f" % clock.get_fps())

def automaticControl():
 ser = serial.Serial('/dev/ttyUSB0', 9600)
 global flag
 while True:
 if (ser.inWaiting!=0):
 incoming = ser.readline().strip('\x00')
 data=incoming.split('\t')
 if len(data)==8:
 X1=int(data[0],base=10)
 Y1=int(data[1],base=10)
 X2=int(data[2],base=10)
 Y2=int(data[3],base=10)
 X3=int(data[4],base=10)

22 | Page

 Y3=int(data[5],base=10)
 #this part takes the x and y coords and finds the distances between them for

auto control
 d3= (((X2-X1)*(X2-X1))+((Y2-Y1)*(Y2-Y1)))
 d1= ((X3-X2)**2+(Y3-Y2)**2)
 d2= ((X1-X3)**2+(Y1-Y3)**2)
 if(d3 >= d2 and d3>=d1):
 x1a=X3
 y1a=Y3
 if(d2>=d1):
 x2a=X1
 y2a=Y1
 x3a=X2
 y3a=Y2
 else:
 x2a=X2
 y2a=Y2
 x3a=X1
 y3a=Y1
 elif(d2>=d3 and d2>=d1):
 x1a=X2
 y1a=Y2
 if(d3>d1):
 x2a=X1
 y2a=Y1
 x3a=X3
 y3a=Y3
 else:
 x2a=X3
 y2a=Y3
 x3a=X1
 y3a=Y1
 elif(d1>=d3 and d1>=d2):
 x1a=X1
 y1a=Y1
 if(d3>=d2):
 x2a=X3
 y2a=Y3
 x3a=X2
 y3a=Y2
 else:
 x2a=X2
 y2a=Y2
 x3a=X3
 y3a=Y3
 d3a=(((x2a-x1a)**2)+((y2a-y1a)**2))
 d1a=(((x3a-x2a)**2)+((y3a-y2a)**2))
 d2a=(((x1a-x3a)**2)+((y1a-y3a)**2))
 # print d1a, d2a, d3a
 GPIO.output(23,GPIO.LOW) #turn off yellow LEDS just before it detects

sensing of the landing pad
 if(x1a<1023 and x2a<1023 and x3a<1023): # if all leds are all detected
 GPIO.output(23,GPIO.HIGH)
 time.sleep(0.01) #pause for 10 ms
 drone.speed = 0.3
 #Automatic Landing control

23 | Page

 if(x1a>400 and x1a<600 and y1a>260 and y1a<460):
 print("Center point found")
 #red point 1 is close to center
 #x1a found
 if(d1a>=(220*220)): #height control, land if close

enough
 print("LAND")
 drone.land() #land
 flag=False
 elif (d1a<(220*220)): #d3a = 368 d1a=400
 print("Lowering")
 drone.move_down() #lower drone
 elif((x1a-500)>100):
 drone.move_left() #go left
 print("Move left")
 if((360-y1a)>100):
 drone.move_forward() #go forward
 print ("Move_forward")
 elif((y1a-360)>100):
 drone.move_backward() #go back
 print("Move Backward")
 elif((500-x1a)>100):
 drone.move_right() #go right
 print("Move right")
 if((360-y1a)>100):
 drone.move_forward() #go forward
 print ("Move_forward")
 elif((y1a-360)>100):
 drone.move_backward() #go back
 print ("Move_backward")
 elif((360-y1a)>100):
 drone.move_forward() #go forward
 print ("Move_forward")
 elif((y1a-360)>100):
 drone.move_backward() #go back
 print ("Move_backward")
 drone.hover()

t1 = Thread(target = manualControl)
t2 = Thread(target = automaticControl)
t3 = Thread(target = display)
if __name__ == '__main__':
 t1.start()
 t2.start()
 t3.start()

24 | Page

10. PROTOTYPE

 The pictures of the prototype are shown below.

Fig. 9.1. Prototype of Raspberry Pi-controlled AR Drone.

Fig. 9.2. Modified Parrot AR drone with Arduino micro

25 | Page

Fig. 9.3. Charging Platform

Fig. 9.4. Closer Look of Modified ChargerProject

26 | Page

Fig. 9.5. Closer Look of Modified Parrot AR drone

Fig. 9.6. Closer Look of Mounted Camera

27 | Page

11. REFERENCES

1. ME-7863 Advanced Mechatronics notes by Prof. Vikram Kapila.

2. ME-5643 Mechatronics notes by Prof. Vikram Kapila.

3. Steven F. Barrett, Arduino Microcontroller Processing for Everyone, Morgan & Claypool

2012.

4. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace

5. Programming the Raspberry Pi. Getting Started with Python, Simon Monk

