Advanced Mechatronics:
AR Parrot Drone Control
Charging Platform

Engineering Team Members:

Ashwin Raj Kumar
Feng Wu
Henry M. Clever

Advanced Mechatronics:
Project Plan

Phase 1: Design testing platform
Phase 2: Automated landing sequence

Phase 3: Battery charging station +
optimum control performance

Landing Pad: Charging Wire

Charger Adaptor

AHILIvE IT1avIDIvHOIIYH
HINWATOd NOI-WNMNIH LIT

=T = o = 2

1OIITE]

General Hardware Improvements

—

¥ : N

v [

Landing Pad
LED power

= -
- > -

e

. Raspberry Pi
LED control

Battery
Charger

Overview

FOHVHOIH
1=ANIHLIT

\

AR Drone System Schematic: Phase 1

AR Drone System Schematic: Phase 2

Wi-Fi

e e e e e e T e |

MINIIN

.

AR Drone System Schematic: Phase 3

r-r-r——"="—=="=-"=-"="="="=-"=-=-"======-"=-71

Wi-Fi

RF

Codes for GUI Button

FPS: 7.22 [-][=][*]

import F'YQEME\ def button(x,y,w,h,cl,c2):

mousel=pygame.mouse.get_pos()
it w+w=mousel[@]=x and y+h=mousel[l]=y:
pygame.draw.rectiscreen, cl, (x,y,w,h})
else:
pygame.draw. rectiscreen, c2, (x,y,w,h})

#forward huftén
button(9@,260,90,608,green_bright,greenz)
screen.blit(myfont. render("Forward",1,black),(118,2880))

Codes for Variable Print

FPS: 7.05 -](*]

import pygame

speed_display=drone.speed
s="Speed:"+str(speed_display)

scfeen.hliftmﬁfnnt.render[str{s},l,blackl,{iﬂﬂ,lﬂml}

Codes for Button Control

Speed:0.2 ‘
u

for event in pygame.event.get():

if event.type == pygame.QUIT:
running = False

elif event.type == pygame.KEYUP or event.type == pygame.MOUSEBUTTONUP:
drone.hover()
pygame.draw.rect(screen,black, (0,248,3608,28))
pygame.draw.rect(screen,black, (360, 8,28,248))

elif event.type == pygame.MOUSEBUTTOMDOWR -
if event.button ==

Zleft
if 9@8=mouse[@]>8 and 328>mouse[l]=26@:
print 'Left'

drone.move_left({)

pygame.draw.rect(screen, yellow_bright, (@,24@8,38,28))
#forward
glif 18@=mouse[B]=90 and 3Z@=mouse[l]l=26@:

print "Forward'

drone.move_forward()

pygame.draw.rect(screen, yellow_bright, (9@,24@,98,20))

Communication between

tl = Thread(target = manualControl)
t2 = Thread(target = automaticControl)
t3 = Thread(target = display)
if _name_ == '_ main__ ":
tl.start()
t2.start()
t3.start()

def automaticControl():
ser = serial.Serial('/dev/ttyUSBO', 9608)
while True:
#while (ser.inWaiting==@):
pass
if (ser.inWaiting!=@):
incoming = ser.readline().strip().strip('\x08")
data=incoming.split()
if len{data)==8:
X1=int(datal[@],base=18)
Yl=int(datal[l],base=18)
X2=int(datal[2],base=18)
Y2=int(data[Z],base=18)
X3=int(datal[4],base=18)
Y3=int(data[5],base=18)

Drone Autonomous Landing

ifﬂxla:lhEEIana xzaﬁlﬂzj and x33{15é33: # if aLl leds are

GPIO.output(25,GPI0.HIGH) B
time.sleep(0.01) #pause for 10 ms B 3
ml={x3a-x2a)/(y2a-y3a) o !
m2={588-x1a)/(360-yla) - .
t=(ml-m2) /(1+(ml+m2}) | -

drone.speed = 8.1
#gAutomatic Landing control
if({x1a-500)=58):

drone.move_left() #go left e —
if{(360-yla)=50):
drone.move_Torward() #go forward
elif{(yla—360)=58):
drone.move_backward{) #go back
elif((580-x1a)l=50):
drone.move_right() #go right
if{(3pB-yla)=50):
drone.move_fTorward(} #go forward
elif((yla-360)=58):
drone.move_backward{) #go back
elif((36@0-yla)=50):
drone.move_forward() #go forward
elif((yla-368)=50):
drone.move backward() #go back

glif(x1a=450 and x1a=558 and yla=31@ and yla=418):
#red point 1 is close to center
#x1la found

if(dla==220): #height control, land if close
drone. land() #land

elif (dla<22@): #d3a = 368 dla=4a8
drone.move_downl) #lower drone

drone.hover()

Consolidation

Previous control system used the following hardware:
o Wii camera + Arduino Micro + XBee for feedback
o Propeller to use parallel programmed cogs for feedback modification and
control of output plus hand controller manual control system
o Manual joystick controller
o Computer + XBee dongle with Processing code to communicate control
feedback to Drone via wifi
Current control system uses the following hardware:
o Wii camera + Arduino Micro + XBee for feedback
o Raspberry Pi for multithreading code to run GUI plus conversion of
control feedback for automatic control
This consolidation makes the system most suitable for users with disabilities
who cannot use a manual joystick for normal operation
Additionally, 1t removes the necessity of an extra computer operating system
and propeller processor
o Much easier to set up and move around
o Fewer hardware parts reduces the possibility of problems with the system
due to bad wiring connections

Results

e We have developed an autonomous landing pad that has capabilities to steer
the drone and land it on the magnets of the landing pad
o The Raspberry Pi incorporates all previous controls of propeller and
processing into a single unit
o With a good hand GUI, Raspberry Pi takes commands from manual
control GUI and automatic Wii feedback to land the drone accurately.
e QOur automatic landing controller 1s a multiple input multiple output (MIMO)
system.
o Angle of tilt still not accounted for: causes instability
o Develop and implement linear quadratic regulator (LQR)

Distance from landing pad ——» - » Move up or down

Rotation (yaw) angle ——» - » Rotate

CONTROLLER

Translation to landing pad ———» - » Move back/forth or left/right

Drone angle of tilt ———» » Correct for tilt angle (none)

Control System: Major Issue

Due to the difference in processing RAM of the R-Pi vs. a conventional
computer, the R-Pi code crashes unexpectedly when running

o Previously developed Linux libraries were used to link our python code
with AR Drone wifi

o We speculate these libraries are designed for operating systems with
sufficient processing power to run the Drone camera and control system
simultaneously

But then a dilemma arises: How can the smartphone app work so well to
control the drone on an even smaller OS than R-Pi?

o More detective work is needed to modify the C libraries linking high level
control commands to AR Drone wifi so that R-Pi can run them more
efficiently: a non-trivial software problem.

Although the system does work without error a good percentage of the time,
this problem must be fixed for reliable use.

Results-2

http://www.youtube.com/watch?v=pM651EnFYl4

Future Improvements

Because of many crashes in testing the AR Drone, the blades are
damaged and need replacement. There may be additional damages as
well.

o Solution: Buy a new AR Drone

The current control system has not been tested enough to optimize the
current control configuration

o Solution: Perform more testing

The electronics onboard AR Drone are off center from the COM and
cause possible drift.

o Solution: Modify electronics to fit in the middle
MIMO systems perform better with a linear quadratic regulator (LQR)
o Solution: Implement LQR with control scheme
There are 3 inputs and 4 outputs on the MIMO loop

o Solution: Use another sensor to monitor and correct for tilt angle

